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The responses of nonlinear dynamics of two classes to coupling are investigated. It is shown both analyti-
cally and numerically that coupling has an excitation ability in a network of the linearly coupled systems. That
is, when an uncoupled system is degenerated to a stable steady state from a limit cycle but in the “marginal”
state due to the system parameter, an appropriate coupling strength can excite the limit cycle such that the
coupled systems exhibit synchronous oscillation; when the uncoupled system is in a stable limit cycle but close
to a chaotic attractor, a certain coupling strength can induce the chaotic attractor such that the coupled systems
reach chaotic synchronization. Such excitation functions of coupling are different from its traditional role
where coupling mainly synchronizes the coupled systems with the original dynamics of the uncoupled system.
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I. INTRODUCTION

In the recent decades, collective phenomena in nonlinear
science have attracted extensive attention with discovery of
different types of oscillatory behaviors, such as chaotic syn-
chronization f1–4g and stochastic resonance or coherence
resonancef5–11g. There are many examples demonstrating
that the collective behavior of systems composed of interact-
ing functional units can be regulated by a cooperative
mechanism, e.g., synchronization.

Synchronization phenomena exist in many biologically
plausible modelsf12–23g. Recent studies show that the in-
tercellular communication is accomplished by synchroniza-
tion f10,17,24–28g, and a number of simulations and funda-
mental experiment works also confirm the synchronization
mechanism in some biological systemsf29,30g. Such com-
munication and synchronization may facilitate fundamental
biological functions. For example, it is possible that coupling
can act as a stimulus to induce a cell to fire in a case where,
without coupling, it would be unable to produce an action
potential. Studying this problem is of great significance from
the biological viewpoint, which motivates the study of this
paper.

Another motivation is from the theoretical aspect of dy-
namics. Although type, mode, and strength of coupling are
crucial to the dynamics of coupled systems, the traditional
function of coupling is to mainly synchronize the coupled
systems with the original dynamics of the uncoupled sys-
tems. For example, when an uncoupled system is an oscilla-
tor, an appropriate coupling strength can drive these identical
oscillators to be synchronizedf31g; when the uncoupled sys-
tem has a chaotic attractor, a certain coupling strength can
force the linearly coupled identical systems to accomplish
chaotic synchronizationf32g. In both cases, the fundamental

dynamics of the two kinds of coupled systems remains unal-
tered by the synchronization. However, besides such a
simple synchronization function, coupling may have other
effects on interacting systems.

This paper reports that coupling has an excitation ability
to excite or recover some potential dynamics of uncoupled
systems. We consider an interconnected system of identical
subsystems without external driving force, and the corre-
sponding coupling is all-to-all and bidirectional. We find that
when the uncoupled system loses its stable limit cycle and is
in a stable steady state due to the system parameter, an ap-
propriate coupling strength can excite the limit cycle such
that coupled systems have a synchronous oscillation. When
the individual subsystems are near a chaotic parameter re-
gime, the excitation function of coupling is also conspicuous,
e.g., when a stable limit cycle is in the marginal state to a
chaotic attractor in the uncoupled system, a certain coupling
strength can push the coupled systems into chaotic synchro-
nization. These two cases imply that coupling acts as a com-
pensating energy to “lift” dynamical behaviors of the un-
coupled system from a stable fixed point to a limit cycle and
from a limit cycle to a chaotic attractor, and at the same time
pushes the coupled systems into synchronization.

II. LIMIT CYCLE CASE

Suppose a network composed ofN identical cells is
coupled in an all-to-all wayssee Fig. 1d. Each cell may be
regarded as a chemical system withm distinct chemical spe-
cies, and is assumed to obey kinetic equations in the vector
form

dZ

dt
= fsZd, s1d

where ZPRm, representing concentrations of the species.
The coupling among the cells is assumed to be linear. The
network is mathematically expressed as
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dX

dt
= FsXd + DX, s2d

where

D =1
D1 D2 D3 ¯ DN

DN D1 D2 ¯ DN−1

] ] ] ]

D2 D3 D4 ¯ D1

2, FsXd =1
fsX1d
fsX2d
]

fsXNd
2

with Dj PRm3m s1ø j øNd.
Note that when the couplings satisfy the conservation

condition sthe condition is always assumed throughout the
paperd,

o
i=1

N

Di = O szero matrixd, s3d

Eq. s2d may be rewritten as the following standard coupling
form:

dX1

dt
= fsX1d + o

j=1

N

D jXj = fsX1d + o
j=1

N

D jsXj − X1d,

dXk

dt
= fsXkd + o

j=1

k−1

DN−k+1+jXj + o
j=k

N

D j−k+1Xj

= fsXkd + o
j=1

k−1

DN−k+1+jsXj − Xkd + o
j=k

N

D j−k+1sXj − Xkd,

s4d

where 2økøN. Clearly, systemss2d and s4d have all-to-all
and bidirectional coupling. In addition, we point out that
such a coupling matrixD with the specific form, i.e.,D is a
circular block matrixf33g, is only for convenience of the
theoretical analysis. In fact, phenomena shown in the paper
can take place in coupled nonlinear dynamical systems with
different modes of couplings.

We first show that there is a close relation between Jaco-
bian matrices of uncoupled systems1d and coupled systems
s2d. To do this, we denote byA andB the Jacobian matrices
of Eqs. s1d and s2d evaluated at their steady states, respec-
tively. According to Appendix A, we have

P−1BP = diag„dsv1Id,dsv2Id, . . . ,dsvNId…, s5d

wheredsxd=A+o j=1
N D jx

j−1, I is the unit matrix of orderm,
andv j s1ø j øNd areN unit roots of the algebraical equation
vN−1=0 with v1=1. Sincedsv1d=ds1d=A, the matrixB
can be similar to a real block matrix, that is, as shown in
Appendix A, there exists a reversible real matrixQ such that

Q−1BQ = SA O
O R D , s6d

whereR is a certain real matrix. The relation between Jaco-
bian matrices of the uncoupled system and the coupled sys-
tems implies that the linearization equation of the coupled
systems at the steady state can be decomposed into two in-
dependent subsystems, one of which is nothing but the lin-
earization equation of the uncoupled systems in its steady
state.

By the decomposition, it is reasonable to expect that the
coupled systems have anseven stabled limit cycle even
though the uncoupled system is still in a stable steady state.
To be specific, denote bylB a characteristic value of the
matrix B. Then,

detSlBI − A − o
j=1

N

D je
f2pisk−1d/Ngs j−1dD = 0 s7d

for 2økøN, wherei =Î−1. From Eq.s7d, one can obtain all
characteristic values ofB including complex ones. To
specify these characteristic values, we return to Eq.s6d. Ac-
cording to Appendix A, we have forN=2K+1

R = diagXSDRsq1d − DIsq1d

DIsq1d DRsq1d D, . . . ,SDRsqKd − DIsqKd

DIsqKd DRsqKd DC , s8d

with q j =2p j /N and 1ø j øK; and forN=2K

FIG. 1. A schematical sketch of an interconnected network for
N=4, where theD j’s neighboring thej th cell represent coupling
coefficient matrices of the cell with other cells, e.g., cell 1 is
coupled with cell 2 through coupling coefficient matrixD2 while
cell 2 is coupled with cell 1 through the matrixD4.
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R = diagXDRspd,SDRsq1d − DIsq1d

DIsq1d DRsq1d D, . . . ,SDRsqK−1d − DIsqK−1d

DIsqK−1d DRsqK−1d
DC , s9d

with q j =2p j /N and 1ø j øK−1, where

DRsqd = D1 + A + D2cosq + D3cos 2q + ¯

+ DNcossN − 1dq,

DIsqd = D2sinq + D3sin 2q + ¯ + DNsinsN − 1dq.

s10d

ObservingR in both cases, one needs to investigate roots
of the following characteristic polynomial:

psld ; UlI − SDRsq jd − DIsq jd

DIsq jd DRsq jd
DU , s11d

where 1ø j ø fsN−1d /2g. For the case ofN=2K, one also
investigates roots of

UlI − A − o
j=1

N

s− 1d jD jU = 0. s12d

Note that

psld = ulI − DRsq jd − iDIsq jduulI − DRsq jd + iDIsq jdu.

s13d

For simplicity, we consider the case ofDk;D0 s2øk
øNd. In this case, we haveDRsq jd=A−sN−1dD0

+D0ok=1
N−1coskq j andDIsq jd=D0ok=1

N−1sinkq j. Note that

o
k=1

N−1

coskq j + i o
k=1

N−1

sinkq j = o
k=1

N−1

eikq j = − 1

for q j =2p j /N with 1ø j ø fsN−1d /2g. Therefore

psld ; ulI − A + ND0u2 = 0. s14d

Also note that Eq.s12d may be included in Eq.s14d. Equa-
tion s14d has more advantages than Eq.s7d in determining
eigenvalues of the matrixB.

On the other hand, assume that the uncoupled system has
the potential of a limit cycle or is degenerated to its stable
steady state from a limit cycle bifurcated from a Hopf bifur-
cation point, due to the system parameter. In this case, one
needs only to choose such coupling strengths that for some
j s2ø j øNd, a certainlB satisfying Eq.s14d goes through
the imaginary axis. In other words, the coupled systems un-
dergo a Hopf bifurcation. Furthermore, if someD j is taken as
a bifurcation parameter, then the transversal condition holds
sincevLB8sD jdvR=sd/dD jdTrBsD jd=1, wherevL andvR are
respectively the left and right characteristic vectors ofB cor-
responding to characteristic valuelB. Thus the coupled sys-
tems will have a periodic orbit produced through a Hopf

bifurcation. In this sense, we say that the original limit cycle
in the uncoupled system is excited or recovered due to effect
of the coupling.

Moreover, when a potential limit cycle in the uncoupled
system is excited, the corresponding periodic orbit in the
coupled systems is practically a synchronization oscillation
of all these uncoupled systems, i.e., the coupled systems
have an in-phase solution. However, the synchronization is
different from the one in the traditional coupled systems
since for the latter, the uncoupled system is first assumed to
be an oscillator and an appropriate coupling strength then
pushes these oscillators to be synchronized. Furthermore, we
point out that the procedure of the above analysis in fact
implies that we have checked all algebraical conditions in the
so-called “global Hopf bifurcation theorem”f34,35g. There-
fore such an excited limit cycle is in nature produced through
the so-called “global Hopf bifurcation.” In addition, theoreti-
cally, the coupled systems with the above-specified coupling
may have an out-of-phase solution when the strength of the
coupling is appropriate, and the out-of-phase solution may be
also produced through the global Hopf bifurcation. Gener-
ally, the out-of-phase solution through such a mechanism is
unstable. Another of our papersf36g discusses the stability of
different types of synchronous solutions including in-phase
and out-of-phase solutions in detail and derives some suffi-
cient conditions for their stability. Similarly, some sufficient
conditions guaranteeing the stability of the excited limit
cycle can be derived. Under these conditions, the excited
limit cycle is stable, so it is independent of the initial condi-
tion. In this case, the corresponding in-phase solution is dif-
ferent from the phase-locking solution in weakly heteroge-
neous neural networks discussed in Ref.f37g. In that paper,
an in-phase solution coexists with an out-of-phase solution,
and both can be stable for the suitable coupling strength, so
either the stable in-phase solution or the stable out-of-phase
solution greatly depends on initial conditions.

Now, we apply the above analytic result to a specific ex-
ample. For simplicity, consider the Brusselator which is a
model of the autocatalytic chemical reactionssee Ref.f38gd,
and is mathematically described as

5
dx1

dt
= a − sm + 1dx1 + x1

2x2

dx2

dt
= mx1 − x1

2x2, 6 s15d

wherea.0 andm.0 are parameters. Equations15d has the
unique steady stateE=sa,m /ad. In addition, introduce a lin-
early coupled system of two identical Brusselators:
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5
dx1

dt
= a − sm + 1dx1 + x1

2x2 + d1sx3 − x1d

dx2

dt
= mx1 − x1

2x2 + d2sx4 − x2d

dx3

dt
= a − sm + 1dx3 + x3

2x4 + d1sx1 − x3d

dx4

dt
= mx3 − x3

2x4 + d2sx2 − x4d.

6 s16d

Using notations of Eq.s2d, we have

D2 = Sd1 0

0 d2
D

and D1=−D2, whered1.0 and d2.0 are constants. It is
known that form.a2+1, the uncoupled Brusselator has a
unique limit cyclef39g whereas forsa−1d2,møa2+1, all
its trajectories tend to the steady state. Moreover, the Jaco-
bian matrix evaluated at the steady state has a pair of conju-
gated complex roots.

As shown in Appendix B, a sufficient condition ensuring
that the coupled Brusselatorss16d have a stable limit cycle is

2sm − 2d1 − 1dd2 . a2s2d1 + 1d. s17d

In fact, this condition is also derived from the Hopf bifurca-
tion for the coupled Brusselators. It follows from Eq.s17d
combined withmøa2+1 that

if d1 ,
a2

2
, thend2 .

a2s2d1 + 1d
2sa2 − 2d1d

and

2d1 + 1 +
a2s2d1 + 1d

2d2
, m ø a2 + 1. s18d

These conditions explicitly show that the coupled Brussela-
tors still have a stable limit cycle even though the uncoupled
Brusselator is currently in the stable steady state.

Next, we further verify this result by numerical simula-
tion. Take a=1.0 andm=2.0. In this case, the uncoupled
Brusselator has a stable equilibriumssee Fig. 2d whereas its
linearly coupled systems with coupling coefficientsd1=0.2
andd2=3.0 have a synchronous oscillation, as shown in Fig.
3. This phenomenon indicates that the coupling has excited
the original potential limit cycle in the uncoupled Brusselator
and pushed the coupled Brusselators to be synchronized.

The numerical simulation also has verified that similar
phenomena can occur where 49/30,mø2.0 at fixed a
=1.0, d1=0.2, andd2=3.0.

We here emphasize that coupling has such an excitation
capability only when the uncoupled system has the potential
to oscillate or is in the “marginal” state to a limit cycle.
Otherwise, coupling cannot induce the synchronization oscil-
lation. For example, whena=1.0 andm=0.9, the uncoupled
Brusselator has a stable equilibrium. In this case, however,
the coupled Brusselators have no limit cycle whateverd1 and

FIG. 2. The steady stateE=s1.0,2.0d of the uncoupled Bruss-
elator s15d is stable with parameter valuesa=1.0 andm=2.0. Ar-
rows in the figure represent the time-evolutionary direction of phase
trajectories. Here we only plot one part of the phase trajectories
si.e., the part corresponds to the case that timet is finited. When
time t tends to infinity, the trajectories will tend to the steady state.

FIG. 3. Synchronous oscillation in the coupled Brusselatorss16d
with parameter valuesa=1.0,m=2.0,d1=0.2, andd2=3.0.sad Time
evolution of componentsx1 andx3 in Eq. s16d; sbd phase diagram of
projection of the corresponding synchronous solution. The initial
values aresx1,x2,x3,x4d=s−1.5,1.8,1.5,−2.5d.

FIG. 4. An example showing that coupling has no excitation
capability, where parameters area=1.0 andm=0.9, and coupling
coefficients ared1=5.2 andd2=13.0. In this case, the uncoupled
Brusselator is not in “marginal” state to the limit cycle, the coupling
cannot excite the original potential limit cycle in the uncoupled
Brusselator.sad Time evolution ofx1 of the uncoupled Brusselator
s15d; sbd Time evolution ofx1 of the coupled Brusselatorss16d. In
either case, all trajectories tend to a fixed point.
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d2 are, as shown in Fig. 4, becausem=0.9 does not satisfy
the necessary conditionsi.e., m.1.0d according to Eq.s18d.

Although the above example has dynamical terms of a
specific form and a specific coupling, the excitation function
of coupling can be found in a wide variety of coupled non-
linear systems. In fact, we also have investigated other ex-
amples, such as the coupled Van der Pol oscillators. The key
point is that coupling can excite or recover a potential limit
cycle of the uncoupled system such that the coupled systems
reach phase synchronization.

III. CHAOTIC ATTRACTOR CASE

In the case of chaotic attractors, we can also obtain simi-
lar effect of coupling by estimating Lyapunov exponents of
uncoupled and coupled systems, respectively. We show be-
low that coupled systems have one positive Lyapunov expo-
nent due to coupling coefficients even though all Lyapunov
exponents of the uncoupled system are currently zero or
negative.

Generally, Lyapunov exponents of a chaotic system can-
not be expressed in an explicit formula. To obtain informa-
tion on Lyapunov exponents, we here give an approximate
scheme according to characteristic of our coupled systems
s2d. Given an initial statez0 of the coupled systems, we can
have an iterative system:

zk+1 = Gksz0,z1, . . . ,zkd. s19d

Let Jkszd be the Jacobian matrix of Eq.s19d evaluated atz in
the kth step. Define

Tksz0d ª JkszkdJk−1szk−1d ¯ J1sz1dJ0sz0d. s20d

Furthermore, letum j(Tksz0d)u be module of thej th eigenvalue
of the kth matrix Tksz0d, where j =1,2, . . . ,mN and k
=0,1, . . .. ByRef. f40g, the j th Lyapunov exponent may be
expressed as

l jsz0d = lim
k→`

1

k
lnhm j„Jkszkd ¯ J1sz1dJ0sz0d…j. s21d

Note that eachJkszkd can be decomposed into one form like
Eq. s6d, and that all eigenvalues of the correspondingR sat-
isfy an equation like Eq.s7d. Therefore one can reasonably
expect that the coupled systemss2d have one positive
Lyapunov exponent if the coupling coefficients are appropri-
ately chosen, even though all Lyapunov exponents of the
uncoupled system still are zero or negative. For clarity, we
consider a simple iteration form for Eq.s2d sin the practical
numerical calculation, we take the order-4 Runge-Kutta
methodd:

zk+1 = sI + dtDdzk + Fszkddt, s22d

where k=0,1,2, . . . ,dt is step interval, andI is the unit
matrix of order mN. Then Jk=I+dtD+dtWk, where Wk
=diagsA1,A2, . . . ,ANd andAk=]fszkd /]j. According to our
analysis in the previous section, we have

P−1JkP = diag„gsv1Id,gsv2Id, . . . ,gsvNId…,

where gsxd;dtAk+ I +dto j=1
N D jx

j−1, and the matrixP is
given in Appendix A. In particular, the matrixP is indepen-

dent of Ak and D j for all k and j . In order to obtain more
information about Lyapunov exponents, now we consider a
special case:D j ;D0 s2ø j øNd. Then, the conservation
condition for coupling yieldsD1=−sN−1dD0. It is easy to
verify that gsv jId= I +dtsAk−ND0d for all j P h1,2, . . . ,Nj.
Note that

P−1TkP ; P−1JkJk−1¯ J1J0P
= P−1JkP ·P−1Jk−1P ¯ P−1J1P ·P−1J0P.

Therefore we introduce a matrix

Sk = p
l=0

k

fI + dtsAl − ND0dg

which can determine all eigenvalues of the matrixTk since
these eigenvalues are composed ofN-multiple eigenvalues of
the matrixSk. The remaining problem is how to evaluate the
eigenvalues matrixSk. Generally, it is very difficult to give
exact expressions of these eigenvalues for functionf of the
general form. Therefore it is also difficult to derive expres-
sions of the corresponding Lyapunov exponents. Here we
take a rough estimation. According to formulas21d for
Lyapunov exponents, to make one Lyapunov exponent of the
coupled systems positive, we chose such a coupling form
and strength that the matrixI +dtsAk−ND0d has one eigen-
value whose norm is more than 1 for allk. In this case, then
one easily sees that the coupled systems have one positive
Lyapunov exponent even though all Lyapunov exponents of
the uncoupled system are currently zero or negative.

For clarity, consider the famous Lorenz system and a sys-
tem of the coupled Lorenz systems. We will numerically
show that the excitation effect of coupling is also conspicu-
ous in the case of the chaotic attractor.

The uncoupled Lorenz system is

5
dx1

dt
= asx2 − x1d

dx2

dt
= cx1 − x1x3 − x2

dx3

dt
= x1x2 − bx3

6 s23d

and the coupled Lorenz systems are assumed as

5
dX

dt
= fsXd + sy1 − x1dD̄

dY

dt
= fsYd + sx1 − y1dD̄,6 s24d

where X=sx1,x2,x3d, Y=sy1,y2,y3d, fsXd=(asx2−x1d ,cx1

−x1x3−x2,x1x2−bx3), andD̄=ds1,0,0d with d.0. Equation
s24d may be considered a special case of Eq.s2d sinceD1

=−D̄ andD2=D̄ in notations corresponding to Eq.s2d.
Similar to the analysis in Sec. II, besides three character-

istic values of the Jacobian matrix of the uncoupled Lorenz
system at the steady state, the Jacobian matrixB of the
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coupled Lorenz systemss24d has another three characteristic
values determined by the following polynomial:

l3 + sa + b + 1 + 2ddl2 + fbsa + cd + 2sb + 1ddgl

+ 2absc − 1d + 2bcd= 0. s25d

The uncoupled Lorenz system produces a Hopf bifurcation
whensa+b+1dsa+cd=2asc−1d with a set of the parameters
a=10, b= 8

3, andc= 470
19 .24.73. Now, we setc=23.85. The

corresponding periodic solution of the uncoupled Lorenz
system is shown in Fig. 5. For fixedc=23.85, to make the
coupled Lorenz systemss24d chaotic, it is necessarily re-
quired that the solution of Eq.s25d is a pair of complex
conjugates with positive real partssa similar requirement is
found to hold for the classical Lorenz attractord. This case
implies that the equilibrium point of the coupled Lorenz sys-
tems is a saddle focus. Therefore we impose the condition

D . 0, Fsdd ;Î3 −
q

2
+ ÎD +Î3 −

q

2
− ÎD −

2p1

3
, 0,

s26d

where D= 1
4p3

2− 1
108p1

2p2
2+ 1

27p1
3p3− 1

6p1p2p3+ 1
27p2

3 with p1=a
+b+1+2d, p2=bsa+cd+2sb+1dd, p3=2absc−1d+2bcd, q
=p3−p1p2/3+2p1

2/27. For algebraical inequalitiess26d, we
can obtain a conservative estimation: 6.5,d,12.5 at fixed
a=10, b= 8

3, andc=23.85, whereas the range of parameterd
obtained by the numerical simulation is shown in Fig. 6.

Figure 7 shows that the coupled Lorenz systems have a
chaotic attractor ford=10. The largest Lyapunov exponents
corresponding to Figs. 5 and 7, respectively, are plotted in
Fig. 8. Figures 5, 7, and 8 clearly indicate that although the
uncoupled Lorenz system is in the limit cyclesFig. 5d, its
potential chaotic attractorsFig. 7d is excited due to the effect
of the coupling.

Similar to the case of the limit cycle, here we especially
emphasize that coupling can excite or recover the Lorenz
attractor from the uncoupled Lorenz system only when the

uncoupled system is in the “marginal” state to the chaotic
attractor. For example, at fixeda=10 and b= 8

3, when
23.638øcø23.875sin this case, the uncoupled Lorenz sys-
tem is in the marginal state to a Lorenz attractor since it is
actually chaotic whenc=23.88d, there ared10 and d20 such
that the coupled Lorenz systems are chaotic or chaotically
synchronized ford10ødød20. However, whenc=23.63
seven though it is close to 23.638d, there is no coupling
strength such that the coupled Lorenz systems are chaotic
ssee Fig. 9d. In fact, numerical simulation has verified that
the coupled Lorenz system has dynamics of no other type
except that all trajectories tend to a fixed point for all cou-
pling strengths at fixeda=10, b= 8

3, andc=23.63. This case
is different from that in Ref.f41g, where an increase in cou-
pling strength can push a system to undergo a series of bi-
furcations.

FIG. 5. Time evolution of the third componentsx3d of the peri-
odic orbit of the uncoupled Lorenz system with parameter values
a=10, b= 8

3, andc=23.85. The initial values ares0, 10.74, −8.76d

FIG. 6. The dependence relationship ofD andFsdd on param-
eterd.

FIG. 7. Phase diagram of projection of a chaotic attractor in the
coupled Lorenz systemss24d with parametersa=10, b= 8

3, c
=23.85, andd=10. The initial values aresx1,x2,x3,y1,y2,y3d
=s−1.5,1.8,1.5,−2.5,1.5,2.3d. Projection of the chaotic attractor is
practically an excited Lorenz attractor.
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IV. CONCLUSION

Both theoretical analysis and numerical examples have
indicated that coupling indeed has a certain excitation ability
to excite or recover some dynamics of the uncoupled system.
We have shown by examples that there is a threshold of
coupling strength: when the coupling strength goes beyond
this threshold, a limit cycle or chaotic attractor of the un-
coupled system will be excited or recovered in the above-
mentioned sense. Moreover, phase synchronization can oc-
cur.

Similar to the effect of noise, coupling acts as a compen-
sating energy to “lift” dynamics of the uncoupled system and
to push the coupled systems to reach synchronization even

though coupling coefficients satisfy the conservation condi-
tion si.e., the total energy of the coupled systems keeps in-
variantd. Therefore such a synchronization due to excitation
effects of coupling may be considered a self-organization
process. However, it is different from stochastic resonance or
coherence resonance in Refs.f5–7g, where the cooperative
behavior is chiefly due to effects of noise, and also different
from the classical synchronization where coupling mainly
synchronizes the original dynamics of the uncoupled system.

These interesting excitation functions of coupling are of
significance not only in theory on dynamics of nonlinear
dynamical systems but also in biological applications. In par-
ticular, such excitation functions of coupling might make liv-
ing organisms harmoniously organize their various appara-
tuses and actively accomplish mutual communications
among cells.

Finally, we point out that although coupling has excitation
functions in the case of chaotic attractors, we have not given
any rigorous theoretical result, and more study is required.
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APPENDIX A: SIMILAR MATRIX

Equations2d may be rewritten as

dX

dt
= FsXd + o

k=1

N

DkJk−1X, sA1d

where

J =1
0 I 0 ¯ 0

0 0 I ¯ 0

] ] ] ]

I 0 0 ¯ 0
2

with I being a unit matrix of orderm.
Denote byA andB the Jacobian matrices of Eqs.s1d and

s2d evaluated at their steady states, respectively. Letv j
=e2pis j−1d/N swhere 1ø j øN and i =Î−1d be N unit roots of
the algebraic equationlN−1=0which is practically the char-
acteristic polynomial of the matrixJ, and denote byP the
Vandermonde matrix

1
I I ¯ I

v1I v2I ¯ vNI

] ] ]

v1
N−1I v2

N−1I ¯ vN
N−1I

2 .

Then, it is easy to verify

P−1BP = diag„dsv1Id,dsv2Id, . . . ,dsvNId…, sA2d

where dsxd=A+o j=1
N D jx

j−1. In addition, sincedsv1d=ds1d
=A from the conservation condition of coupling, the matrix

FIG. 8. Time evolution of the largest Lyapunov exponents cor-
responding to Figs. 5 and 7, where parameters area=10.0, b= 8

3,
c=23.63, and the coupling coefficient isd=10.0. The largest
Lyapunov exponent of the uncoupled Lorenz system with the initial
condition s−1.5, 1.8, 1.5d is negative and near 0.0 whereas that of
the coupled Lorenz systems with the initial conditions−1.5, 1.8,
1.5, −2.5, 1.5, 2.3d is positive and near 0.7606 with Lyapunov di-
mension 2.8816.

FIG. 9. An example showing that coupling cannot excite the
original potential Lorenz attractor in the uncoupled Lorenz system
when the uncoupled Lorenz system is not in the marginal state to
the chaotic attractor, where parameters area=10.0,b= 8

3, c=23.63,
and coupling coefficients ared=10.0. sad Time evolution of the
third componentx3 of the uncoupled Lorenz system with the initial
conditions−1.5, 1.8, 1.5d; sbd time evolution of the third component
y3 of the coupled Lorenz systems with the initial conditions−1.5,
1.8, 1.5, −2.5, 1.5, 2.3d. In either case, the amplitude of the third
component gradually decreases with time.
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B can be similar to a real block matrix, that is, there exists a
reversible real matrixQ such that

Q−1BQ = SA O
O R D , sA3d

whereR is a certain real matrix. For clarity, we distinguish
two cases.

Case N=2K+1. Define twom3m matrix functions:

DRsqd = D1 + A + D2 cosq + D3 cos 2q + ¯

+ DN cossN − 1dq,

DIsqd = D2 sinq + D3 sin 2q + ¯ + DN sinsN − 1dq sA4d

and twoNm3m matrix functions:

PRsqd = „I,I cosq,I cos 2q, . . . ,I cossN − 1dq…t,

PIsqd = „O,I sinq,I sin 2q, . . . ,I sinsN − 1dq…t, sA5d

wheret means transpose. Now, it is easy to give expressions
of Q andR as follows:

R = diagXSDRsq1d − DIsq1d

DIsq1d DRsq1d D, . . . ,SDRsqKd − DIsqKd

DIsqKd DRsqKd DC
sA6d

and

Q = „PRs0d;PRsq1d,PIsq1d; . . . ;PRsqKd,PIsqKd…,

whereq j =2p j / s2K+1d for 1ø j øK.
Case N=2K. Similarly,

R = diagXDRspd;SDRsq1d − DIsq1d

DIsq1d DRsq1d D ; . . . ;SDRsqK−1d − DIsqK−1d

DIsqK−1d DRsqK−1d
DC sA7d

and

Q = „PRs0d,PRspd;PRsq1d,PIsq1d; . . . ;PRsqKd,PIsqKd…,

where q j =2p j / s2Kd for 1ø j øK−1, DRspd=A
+oi=1

N s−1di+1Di, PRs0d=sI ,I , . . . ,Idt, and PRspd=sI ,
−I ,I , . . . ,I ,−Idt.

APPENDIX B: CONDITIONS FOR LIMIT CYCLE OF
COUPLED BRUSSELATORS

Consider coupledN identical Brusselators with the form
s2d. We show that the coupled Brusselators have a limit cycle
even though the uncoupled Brusselator is still in the stable
state but not far away from a limit cycle.

For simplicity, consider the case ofN=2K, whereK is a
positive integer. We then haveDRspd=A+o j=1

N s−1d j−1D j.
AssumeD j =diagsdj

s1d ,dj
s2dd with dj

s1d.0 and dj
s2d.0 s1ø j

øNd. Note that the characteristic polynomial ofDRspd is

l2 + jl + h = 0, sB1d

where

j = a2 − 1 +mo
j=1

N

s− 1d jsdj
s2d + dj

s2dd,

h = a2 + a2o
j=1

N

s− 1d jdj
s1d + s1 − mdo

j=1

N

s− 1d jdj
s2d

+ So
j=1

N

s− 1d jdj
s2dDSo

j=1

N

s− 1d jdj
s2dD .

Whenh,0, Eq. sB1d has one positive root. Also, note that

o
j=1

N

s− 1d jdj
sld = o

j=2

N

f1 + s− 1d jgdj
sld . 0, l = 1,2.

Thush,0 implies

m . 1 +

a2o
j=2

N

f1 + s− 1d jgdj
s1d

o
j=2

N

f1 + s− 1d jgdj
s2d

+ o
j=2

N

f1 + s− 1d jgdj
s1d.

sB2d

However,møa2+1. Therefore

a2o
j=2

N

f1 + s− 1d jgsdj
s2d − dj

s1dd

. Ho
j=2

N

f1 + s− 1d jgdj
s1dJ ·Ho

j=2

N

f1 + s− 1d jgdj
s2dJ . sB3d

Finally, when Eq.sB2d together withmøa2+1 and Eq.sB3d
are satisfied, the coupled Brusselators have a stable limit
cycle even though the uncoupled Brusselator is currently in
the stable steady state.

ZHOU, CHEN, AND WANG PHYSICAL REVIEW E71, 066211s2005d

066211-8



f1g V. S. Anishchenko, T. E. Vadivasova, D. E. Postnov, and M. A.
Safonova, Int. J. Bifurcation Chaos Appl. Sci. Eng.2, 633
s1992d.

f2g M. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett.
76, 1804s1996d.

f3g A. S. Pikovsky, M. G. Rosenblum, G. V. Osipov, and J.
Kurths, Physica D104D, 219 s1997d.

f4g T. S. Zhou, J. H. Lv, G. Chen, and Y. Tang, Phys. Lett. A301,
231 s2002d.

f5g A. S. Pikovsky, M. G. Rosenblum, and J. Kurths,Synchroni-
zation: A Universal Concept in Nonlinear SciencessCam-
bridge University Press, Cambridge, England, 2001d.

f6g V. Anishchenko, F. Moss, A. Neiman, and L. Schimansky,
Phys. Usp.42, 7 s1999d.

f7g K. Wiessenfeld and F. Moss, NaturesLondond 373, 33 s1995d.
f8g D. Sigeti and W. Horsthemke, J. Stat. Phys.54, 1217s1989d.
f9g A. S. Pikovsky and J. Kurths, Phys. Rev. Lett.78, 775s1997d.

f10g S. K. Han, T. G. Yim, D. E. Postnov, and O. V. Sosnovtseva,
Phys. Rev. Lett.83, 1771s1999d.

f11g H. Gang, T. Ditzinger, C. Z. Ning, and H. Haken, Phys. Rev.
Lett. 71, 807 s1993d.

f12g J. J. Tyson, Ann. N.Y. Acad. Sci.316, 279 s1979d.
f13g E. N. Best, Biophys. J.27, 87 s1979d.
f14g V. Torre, Biol. Cybern.17, 137 s1975d.
f15g J. Bélar and P. Holmes, Q. Appl. Math.32, 193 s1984d.
f16g T. Shinbrot, C. Grebogi, E. Ott, and J. A. York, Nature

sLondond 363, 411 s1993d.
f17g D. McMillen, N. Kopell, J. Hasty, and J. J. Collins, Proc. Natl.

Acad. Sci. U.S.A.99, 679 s2002d.
f18g V. I. Krinsky and A. V. Kholopov, Biofizika12, 524 s1967d.
f19g R. Fitz-Hugh, Biophys. J.1, 445 s1961d.
f20g G. J. Rozansky, J. Jalife, and G. K. Moe, Circulation,69, 163

s1984d.
f21g A. T. Winfree, The Geometry of Biological TimesSpringer,

Berlin, 1980d.

f22g E. C. Zeeman, inDynamical Systems, edited by M. M. Peixoto
sAcademic Press, New York, 1973d, pp. 683–741.

f23g R. E. Mirollo and S. H. Strogatz, SIAM J. Appl. Math.6, 1645
s1990d.

f24g M. E. Taga and B. L. Bassler, Proc. Natl. Acad. Sci. U.S.A.
100, 14549s2003d.

f25g B. Perbal, Cell Commun. Signaling1, 1 s2003d.
f26g D. E. Postnov, O. V. Sosnovtseva, S. K. Han, and T. G. Yim,

Int. J. Bifurcation Chaos Appl. Sci. Eng.10, 2541s2000d.
f27g I. Z. Kiss, Y. Zhai, J. L. Hudson, C. Zhou, and J. Kurths, Chaos

13, 267 s2003d.
f28g M. Zhan, G. W. Wei, C. H. Lai, Y. C. Lai, and Z. Liu, Phys.

Rev. E 66, 036201s2002d.
f29g G. Balazsi, A. Cornell-Bell, A. B. Neiman, and F. Moss, Phys.

Rev. E 64, 041912s2001d.
f30g G. Balazsi, A. Cornell-Bell, and F. Moss, Chaos13, 515

s2003d.
f31g T. S. Zhou and S. C. Zhang, Physica D151, 199 s2001d.
f32g J. H. Lv, T. S. Zhou, and S. C. Zhang, Chaos, Solitons Fractals

14, 529 s2002d.
f33g P. Davis,Circular Matrices sWiley, New York, 1979d.
f34g J. C. Alexander and G. Auchmuty, Arch. Ration. Mech. Anal.

93, 253 s1986d.
f35g T. S. Zhou, L. N. Chen, R. Q. Wang, and K. Aihara, Genome

Informatics 15, 223 s2004d.
f36g T. S. Zhou, L. J. Yang, and Y. Tangsunpublishedd.
f37g C. C. Chow, Physica D118, 343 s1998d.
f38g G. Nicolis and I. Prigogine,Self-organization in Nonequilib-

rium SystemssWiley Interscience, New York, 1977d.
f39g C. F. Zhang,Theory of Differential EquationssBeijing Scien-

tific Press House, 1985d.
f40g H. Tong, Non-linear Time Series: A Dynamical System Ap-

proach sOxford University Press, New York, 1990d.
f41g S. Bahar, Fluct. Noise Lett.4, L87 s2004d.

EXCITATION FUNCTIONS OF COUPLING PHYSICAL REVIEW E71, 066211s2005d

066211-9


