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Excitation functions of coupling
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The responses of nonlinear dynamics of two classes to coupling are investigated. It is shown both analyti-
cally and numerically that coupling has an excitation ability in a network of the linearly coupled systems. That
is, when an uncoupled system is degenerated to a stable steady state from a limit cycle but in the “marginal”
state due to the system parameter, an appropriate coupling strength can excite the limit cycle such that the
coupled systems exhibit synchronous oscillation; when the uncoupled system is in a stable limit cycle but close
to a chaotic attractor, a certain coupling strength can induce the chaotic attractor such that the coupled systems
reach chaotic synchronization. Such excitation functions of coupling are different from its traditional role
where coupling mainly synchronizes the coupled systems with the original dynamics of the uncoupled system.
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[. INTRODUCTION dynamics of the two kinds of coupled systems remains unal-
) ] . tered by the synchronization. However, besides such a
In the recent decades, collective phenomena in nonlmeagimme synchronization function, coupling may have other
science have attracted extensive attention with discovery Qfffects on interacting systems.
different types of oscillatory behaviors, such as chaotic syn- Thjs paper reports that coupling has an excitation ability
chronization[1-4] and stochastic resonance or coherencgqg excite or recover some potential dynamics of uncoupled
resonancg5-11]. There are many examples demonstratingsystems. We consider an interconnected system of identical
that the collective behavior of systems composed of interactypsystems without external driving force, and the corre-
ing functional units can be regulated by a cooperativesnonding coupling is all-to-all and bidirectional. We find that
mechanism, e.g., synchronization. S when the uncoupled system loses its stable limit cycle and is
Synchronization phenomena exist in many biologicallyjn 5 stable steady state due to the system parameter, an ap-
plausible model$12-23. Recent studies show that the in- propriate coupling strength can excite the limit cycle such
tercellular communication is accomplished by synchronizaynat coupled systems have a synchronous oscillation. When
tion [10,17,24-28 and a number of simulations and funda- the individual subsystems are near a chaotic parameter re-
mental experiment works also confirm the synchronizatioryime, the excitation function of coupling is also conspicuous,
mechanism in some biological systef29,30. Such com- ¢ g when a stable limit cycle is in the marginal state to a
munication and synchronization may facilitate fundamentaknaotic attractor in the uncoupled system, a certain coupling
biological functions. For example, it is possible that couplingstrength can push the coupled systems into chaotic synchro-
can act as a stimulus to induce a cell to fire in a case whergization. These two cases imply that coupling acts as a com-
without coupling, it would be unable to produce an aCtiO”pensating energy to “lift’ dynamical behaviors of the un-
potential. Studying this problem is of great significance fromcoupled system from a stable fixed point to a limit cycle and
the biological viewpoint, which motivates the study of this from a limit cycle to a chaotic attractor, and at the same time

paper. o . pushes the coupled systems into synchronization.
Another motivation is from the theoretical aspect of dy-

namics. Although type, mode, and strength of coupling are
crucial to the dyr_1ami_cs of co_upled systems, the traditional Il. LIMIT CYCLE CASE

function of coupling is to mainly synchronize the coupled

systems with the original dynamics of the uncoupled sys- Suppose a network composed bf identical cells is
tems. For example, when an uncoupled system is an oscill&oupled in an all-to-all waysee Fig. 1L Each cell may be
tor, an appropriate coupling strength can drive these identicaegarded as a chemical system witidistinct chemical spe-
oscillators to be synchroniz¢81]; when the uncoupled sys- cies, and is assumed to obey kinetic equations in the vector
tem has a chaotic attractor, a certain coupling strength caform
force the linearly coupled identical systems to accomplish

chaotic synchronizatiof32]. In both cases, the fundamental %Z =1(2), (1)
t
where Ze R™, representing concentrations of the species.
*Email address: tszhou@msn.com The coupling among the cells is assumed to be linear. The
"Email address: chen@elec.osaka-sandai.ac.jp network is mathematically expressed as
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(4)

where 2<k=<N. Clearly, system$2) and (4) have all-to-all

and bidirectional coupling. In addition, we point out that
such a coupling matri0 with the specific form, i.e.D is a
circular block matrix[33], is only for convenience of the
theoretical analysis. In fact, phenomena shown in the paper
can take place in coupled nonlinear dynamical systems with
different modes of couplings.

We first show that there is a close relation between Jaco-
bian matrices of uncoupled systdit) and coupled systems
(2). To do this, we denote byl and3 the Jacobian matrices
of Egs. (1) and(2) evaluated at their steady states, respec-

FIG. 1. A schematical sketch of an interconnected network fortively. According to Appendix A, we have
N=4, where theD;'s neighboring thejth cell represent coupling 112 — A
coefficient matriC(Jes of the cell with other cells, e.g., cell 1 is PBP = diagd(wyl), d(wl), ... dlenl), (5)

coupled with cell 2 through coupling coefficient mat¥ while Whered(X)=A+EJN=1DJ-XJ‘1, | is the unit matrix of ordem,

cell 2 is coupled with cell 1 through the matri,. andw; (1=<j=<N) areN unit roots of the algebraical equation
oN-1=0 with w,;=1. Sinced(w;)=d(1)=A4, the matrix B
dXx can be similar to a real block matrix, that is, as shown in
dt = F(X) + DX, ) Appendix A, there exists a reversible real mat@such that
h o7 'BQ (A O) (6)
where = '
O R
Dy D; D3 -+ Dy f(Xp) whereR is a certain real matrix. The relation between Jaco-
Dn Dy Dy -+ Dy f(X5) bian matrices of the uncoupled system and the coupled sys-
D=y . . . ] FX= tems implies that the linearization equation of the coupled
) - ! systems at the steady state can be decomposed into two in-
D, D3 Dy -+ Dy f(X) dependent subsystems, one of which is nothing but the lin-
earization equation of the uncoupled systems in its steady

with D e R™™ (1<j<N). state

Note that when the couplings satisfy the conservation gy the decomposition, it is reasonable to expect that the
condition (the condition is always assumed throughout thecoupled systems have afeven stablg limit cycle even

paper, though the uncoupled system is still in a stable steady state.
N To be specific, denote byz a characteristic value of the
> D, = O (zero matriy, (3y ~ Matrix 5. Then,
i=1 N
_ , , det()\gl —A-2 Dje[zﬂ“k‘l)"“](i‘l)) =0 (7)
Eqg. (2) may be rewritten as the following standard coupling =1
form: — )
for 2<k=N, wherei=vy-1. From Eq.7), one can obtain all
dX N N characteristic values of3 including complex ones. To
b f(Xy) + >, DX, = f(Xy) + > Dj(X; = Xy), specify these characteristic values, we return to(Bj.Ac-
dt j=1 j=1 cording to Appendix A, we have fdl=2K+1

o [(Pr(8D) —D.wl)) (DR(ﬂK) —Dmfm))
R'd'ag«o.(al) Do) )\ D90 Dao) /) ®

with 9;=27j/N and 1<j<K; and forN=2K
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) Dr(%) —Dy(9y) ) (DR(ﬁK—l) = Dy(9-1) ))
=d ), e ,
R '39<DR( ) (D.(ﬂl) De(9y) DB DelDcr ©

with 4;=27j/N and 1< j<K-1, where bifurcation. In this sense, we say that the original limit cycle
in the uncoupled system is excited or recovered due to effect
Dr(9) =D+ A+ Dycos+Dscos 20+ -+ of the coupling.
+DpcogN - 1), Moreover, when a potential limit cycle in the uncoupled
system is excited, the corresponding periodic orbit in the
coupled systems is practically a synchronization oscillation
of all these uncoupled systems, i.e., the coupled systems
(10 have an in-phase solution. However, the synchronization is
. . . . different from the one in the traditional coupled systems
of tohgsfiﬁrc::/]v%lghb;rctﬁis;isé ggﬁ/ggﬁﬁ:l_to investigate rOOtSsince for the latter, the uncoupled system is first assumed to
' be an oscillator and an appropriate coupling strength then
(DR(,&]) - Dl(ﬁj)> ‘ pushes these oscillators to be synchronized. Furthermore, we
N , (11) point out that the procedure of the above analysis in fact
Dy(9)  Dr() implies that we have checked all algebraical conditions in the
so-called “global Hopf bifurcation theoreni34,35. There-
fore such an excited limit cycle is in nature produced through
the so-called “global Hopf bifurcation.” In addition, theoreti-
cally, the coupled systems with the above-specified coupling
=0. (12 may have an out-of-phase solution when the strength of the
coupling is appropriate, and the out-of-phase solution may be
also produced through the global Hopf bifurcation. Gener-
ally, the out-of-phase solution through such a mechanism is
POV = [N = DR(9;) = iDy(8))|]\] = Dr(;) +iDy(9))]. unstable. Another of our pap€li36] discusses the stability of
different types of synchronous solutions including in-phase
(13 and out-of-phase solutions in detail and derives some suffi-
For simplicity, we consider the case Gi,=D, (2<k cient conditions for their stability. Similarly, some sufficient

<N). In this case, we haveDg(9)=A~(N-1)D, conditions guaranteeing the stability of the excited limit

Di(9) =Dysind + Dasin 29 + - -+ + Dysin(N - 1) 9.

p(N) =

where 1=<j<[(N-1)/2]. For the case oN=2K, one also
investigates roots of

N
M-A-> (-1)'D

=1

Note that

+ DN Tcoskd: and Dy(9;) =D=M -sinkd;. Note that qule can _be derived. _U_nd_er these conditions_, _t_he excit_ed
0%k=1 ! RV 0%et ) limit cycle is stable, so it is independent of the initial condi-
N-1 N-1 N-1 tion. In this case, the corresponding in-phase solution is dif-
> coskd; + i > sin kd; = > ekdi=—1 ferent from the phase-locking solution in weakly heteroge-
k=1 k=1 k=1 neous neural networks discussed in R&f]. In that paper,

an in-phase solution coexists with an out-of-phase solution,

for =2} /N with 1<j<[(N-1)/2]. Therefore and both can be stable for the suitable coupling strength, so

p(\) = [N - A+ NDg2=0. (14) eithe_r the stable in-phase sollu.ti.on or th_e_ stable out-of-phase
solution greatly depends on initial conditions.
Also note that Eq(12) may be included in Eq(14). Equa- Now, we apply the above analytic result to a specific ex-
tion (14) has more advantages than E@) in determining ample. For simplicity, consider the Brusselator which is a
eigenvalues of the matris. model of the autocatalytic chemical reacti@ee Ref[38]),

On the other hand, assume that the uncoupled system hagd is mathematically described as
the potential of a limit cycle or is degenerated to its stable
steady state from a limit cycle bifurcated from a Hopf bifur-

cation point, due to the system parameter. In this case, one dx; 5

needs only to choose such coupling strengths that for some qt 2o (e + 1)xg + X%

j (2=<j=N), a certain\y satisfying Eq.(14) goes through q (15
the imaginary axis. In other words, the coupled systems un- 9% _ MX1—X§X2,

dergo a Hopf bifurcation. Furthermore, if sorfeis taken as dt

a bifurcation parameter, then the transversal condition holds

sincev B'(D;)vg=(d/dD;)TrB(D;)=1, wherev, anduvg are

respectively the left and right characteristic vector®afor-  wherea>0 andu >0 are parameters. Equati¢tb) has the
responding to characteristic valdg. Thus the coupled sys- unique steady stateé=(a,u/a). In addition, introduce a lin-
tems will have a periodic orbit produced through a Hopfearly coupled system of two identical Brusselators:
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1.9f 1 FIG. 3. Synchronous oscillation in the coupled Brusselatbés

with parameter values=1.0,4=2.0,d;=0.2, andd,=3.0.(a) Time
evolution of components;, andxz in Eq. (16); (b) phase diagram of
1.7} 1 projection of the corresponding synchronous solution. The initial
values ardx;,X,,X3,%)=(-1.5,1.8,1.5,-2.6

15 . : ! . . : : 2 2
X E I ] ; ; k 2 ] a a‘(2d, +1
06 07 08 09 1 x111 12 13 14 15 it dy< > thend, > (21 ) nd
2 2(8. - 2d1)
FIG. 2. The steady staté=(1.0,2.0 of the uncoupled Bruss- a2(2d1+ 1)
elator (15) is stable with parameter values=1.0 andu=2.0. Ar- 20, +1+—————<pu<a’+1l. (18

rows in the figure represent the time-evolutionary direction of phase 2d,

trajectories. Here we only plot one part of the phase trajectorie
(i.e., the part corresponds to the case that tinie finite). When
time t tends to infinity, the trajectories will tend to the steady state.

Shese conditions explicitly show that the coupled Brussela-
tors still have a stable limit cycle even though the uncoupled
Brusselator is currently in the stable steady state.

r Next, we further verify this result by numerical simula-

dx 2 tion. Takea=1.0 andu=2.0. In thi h led
(L D% + X% + O (Xa — X ion. Takea=1.0 andu=2.0. In this case, the uncouple
dt (i 1 X6+ (X5 = X0) Brusselator has a stable equilibriisee Fig. 2 whereas its
dx ) linearly coupled systems with coupling coefficients=0.2
s X1 = X7Xo + Oo(X4 = Xo) andd,=3.0 have a synchronous oscillation, as shown in Fig.

A

(16) 3. This phenomenon indicates that the coupling has excited

dxg _ _ 2 _ the original potential limit cycle in the uncoupled Brusselator

gt @ (1 1)X5 + X% + da(x1 = X3) and pushed the coupled Brusselators to be synchronized.

dx, The numerical simulation also has verified that similar

== luXg = X5Xy + Op(Xp — Xg). phenomena can occur where 49A3p<2.0 at fixed a
 dt =1.0,d,=0.2, andd,=3.0.

We here emphasize that coupling has such an excitation
capability only when the uncoupled system has the potential
to oscillate or is in the “marginal” state to a limit cycle.
Otherwise, coupling cannot induce the synchronization oscil-

(dl 0 ) lation. For example, whea=1.0 andu=0.9, the uncoupled
DZZ

Using notations of Eq(2), we have

Brusselator has a stable equilibrium. In this case, however,

0 d the coupled Brusselators have no limit cycle whatelyeand

1.2 1.05

and D,=-D,, whered;>0 andd,>0 are constants. It is @ § ®)

known that foru>a?+1, the uncoupled Brusselator has a i1k

unique limit cycle[39] whereas forla-1)’<u<a’+1, all AR _0-95’

its trajectories tend to the steady state. Moreover, the Jaco- * os

bian matrix evaluated at the steady state has a pair of conju- o l

gated complex roots. ' )

As shown in Appendix B, a sufficient condition ensuring 0 s 10 150 200 I 100150 200

that the coupled Brusselatais6) have a stable limit cycle is
FIG. 4. An example showing that coupling has no excitation
capability, where parameters aae1.0 andu=0.9, and coupling
2(u - 2d; - 1)d, > a%(2d, + 1). (17)  coefficients ared;=5.2 andd,=13.0. In this case, the uncoupled
Brusselator is not in “marginal” state to the limit cycle, the coupling
cannot excite the original potential limit cycle in the uncoupled
In fact, this condition is also derived from the Hopf bifurca- Brusselator(a) Time evolution ofx; of the uncoupled Brusselator
tion for the coupled Brusselators. It follows from E{.7) (15); (b) Time evolution ofx, of the coupled Brusselatofg6). In
combined withu<a?+1 that either case, all trajectories tend to a fixed point.
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d, are, as shown in Fig. 4, becauge=0.9 does not satisfy dent of A, and D; for all k andj. In order to obtain more
the necessary conditidine., u>1.0) according to Eq(18). information about Lyapunov exponents, now we consider a
Although the above example has dynamical terms of apecial case:D;=D,(2<j<N). Then, the conservation

specific form and a specific coupling, the excitation functioncondition for coupling yieldsD;=-=(N-1)D,. It is easy to

of coupling can be found in a wide variety of coupled non-verify that g(w;l)=I+8t(A—NDy) for all je{1,2,... N}.
linear systems. In fact, we also have investigated other exNote that

amples, such as the coupled Van der Pol oscillators. The key

point is that coupling can excite or recover a potential limit PP =PI 1 JJoP

cycle of the uncoupled system such that the coupled systems ) 1 1 1

reach phase synchronization. =P IP P dheaPr PP PP

IIl. CHAOTIC ATTRACTOR CASE Therefore we introduce a matrix

In the case of chaotic attractors, we can also obtain simi- K
lar effect of coupling by estimating Lyapunov exponents of Sc= 1111+ oA - NDy)]
uncoupled and coupled systems, respectively. We show be- =0
low that coupled systems have one positive Lyapunov expohich can determine all eigenvalues of the maffixsince
nent due to coupling coefficients even though all Lyapunoypese eigenvalues are composedahultiple eigenvalues of
exponents of the uncoupled system are currently zero Ohe matrixS,. The remaining problem is how to evaluate the
negative. , eigenvalues matrig,. Generally, it is very difficult to give
Generally, Lyapunov exponents of a chaotic system canayact expressions of these eigenvalues for functiof the
not be expressed in an explicit formula. To obtain informa-general form. Therefore it is also difficult to derive expres-
tion on Lyapunov exponents, we here give an approximat§jons of the corresponding Lyapunov exponents. Here we
scheme according to characteristic of our coupled systemgye 2 rough estimation. According to formu(@1) for
(2). Given an initial state, of the coupled systems, we can | yapunov exponents, to make one Lyapunov exponent of the
have an iterative system: coupled systems positive, we chose such a coupling form
Z1 = GZ0,21, -+ 2. (190  and strength that tr_le matrixt ot(Ax—NDo) ha_s one eigen-
value whose norm is more than 1 for &llin this case, then
Let J,(2) be the Jacobian matrix of E¢L9) evaluated azin  one easily sees that the coupled systems have one positive
the kth step. Define Lyapunov exponent even though all Lyapunov exponents of
o the uncoupled system are currently zero or negative.
TidZ0) = (20 J-1(Be1) -+ I(20)3o(20)- 20 For clarity, consider the famous Lorenz system and a sys-
Furthermore, Iet,uj(Tk(zo))| be module of thgth eigenvalue tem of the coupled Lorenz systems. We will numerically
of the kth matrix T(z), where j=1,2,...mN and k  show that the excitation effect of coupling is also conspicu-

=0,1,.... ByRef. [40], the jth Lyapunov exponent may be ous in the case of the chaotic attractor.
expressed as The uncoupled Lorenz system is
(
o1

A\j(zg) = lfl Eln{ﬂj(Jk(zk) - dh(Z)d(z)} (2D % =a(X = X;)
Note that eacl,(z) can be decomposed into one form like ) [ B 23
Eg. (6), and that all eigenvalues of the correspondRigat- gt ST XRTX (23)
isfy an equation like Eq(7). Therefore one can reasonably dx
expect that the coupled systenti2) have one positive -8 X1%o — bXg
Lyapunov exponent if the coupling coefficients are appropri- \ d

ately chosen, even though all Lyapunov exponents of th%

X : . nd the coupled Lorenz systems are assumed as
uncoupled system still are zero or negative. For clarity, we

consider a simple iteration form for ER) (in the practical X —

numerical calculation, we take the order-4 Runge-Kutta i f(X) + (yp=x)D

method: dy (24)
Z1= (I + D)z + Fz) &, (22 ai f(Y) +(x,—y1)D,

wherek=0,1,2,...,8t is step interval, and is the unit
matrix of order mN. Then J =T+ 8D+ 8V, where W,  Where X=(x1,%a,Xs), Y=(y1,y2,¥a), FX)=(alxx=x0),0%
=diagA;, Ay, ..., Ay) and A,=df(z)/9¢€. According to our  —X;Xz— X2, XX —bXs), andD=d(1,0,0 with d>0. Equation
analysis in the previous section, we have (24) may be considered a special case of B).since D,
P13,P = dia N, ., ..., ), =-D andD,=D in notations corresponding to E(p).

X dglen) g(_wz ) gleond)) Similar to the analysis in Sec. Il, besides three character-
where g(x)= 5tAk+I+5tE]N:lexJ‘1, and the matrixP is istic values of the Jacobian matrix of the uncoupled Lorenz
given in Appendix A. In particular, the matriR is indepen- system at the steady state, the Jacobian mdirigf the
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FIG. 5. Time evolution of the third componet¥;) of the peri- ) )
odic orbit of the uncoupled Lorenz system with parameter values FIG. 6. The dependence relationshipbfand F(d) on param-
a=10,b=2, andc=23.85. The initial values ar®, 10.74, -8.7p eterd.

coupled Lorenz systen{24) has another three characteristic

values determined by the following polynomial: uncoupled system is in the “marginal” state to the chaotic

attractor. For example, at fixea=10 and b=2, when
N+ (a+b+1+2d)\2+[b(a+c)+2(b+1)d]n 23.638<c=<23.875(in this case, the uncoupled Lorenz sys-
+2ab(c— 1) + 2bcd= 0, (25) tem is in the marginal state to a Lorenz attractor since it is

actually chaotic where=23.88, there ared,; and d,g such

The uncoupled Lorenz system produces a Hopf bifurcatiorihat the coupled Lorenz systems are chaotic or chaotically
when(a+b+1)(a+c)=2a(c-1) with a set of the parameters sSynchronized ford;p<d=<d,, However, whenc=23.63
a=10, bzg, andc:%)224.73. Now, we set=23.85. The (even though it is close to 23.688there is no coupling
corresponding periodic solution of the uncoupled LorenzStrength such that the coupled Lorenz systems are chaotic
system is shown in Fig. 5. For fixezk23.85, to make the (see Fig. 9. In fact, numerical simulation has verified that
coupled Lorenz system&4) chaotic, it is necessarily re- the coupled Lorenz system has dynamics of no other type
quired that the solution of Eq25) is a pair of complex €Xcept that all trajectories tend to a fixed point for all cou-

. i 8 .
conjugates with positive real parta similar requirement is  Pling strengths at fixed=10, b=3, andc=23.63. This case
found to hold for the classical Lorenz attradtofhis case s different from that in Ref[41], where an increase in cou-
implies that the equilibrium point of the coupled Lorenz sys-Pling strength can push a system to undergo a series of bi-

tems is a saddle focus. Therefore we impose the condition furcations.

3 3
!’_ 2

(26) ‘

where A=3p3-150?p3+ 5P3Pa— 5P1P2Ps+ 3P With py=a
+b+1+2d, p,=b(a+c)+2(b+1)d, ps=2ab(c-1)+2bcd, q & 04

=p3—P1P,/ 3+2p3/27. For algebraical inequalitie®6), we

can obtain a conservative estimation: €.8<12.5 at fixed -104
a=10,b=%, andc=23.85, whereas the range of parameter
obtained by the numerical simulation is shown in Fig. 6. 20

Figure 7 shows that the coupled Lorenz systems have a
chaotic attractor fod=10. The largest Lyapunov exponents
corresponding to Figs. 5 and 7, respectively, are plotted in
Fig. 8. Figures 5, 7, and 8 clearly indicate that although the x -20 0
uncoupled Lorenz system is in the limit cydEig. 5), its
potential chaotic attractdfig. 7) is excited due to the effect FIG. 7. Phase diagram of projection of a chaotic attractor in the

of th_e poupling. o ~ coupled Lorenz system$24) with parametersa=10, bzg, c
Similar to the case of the limit cycle, here we especially=23.85, andd=10. The initial values are(X;,X»,X3,V1,Y2,Ya)

emphasize that coupling can excite or recover the Lorenz(-1.5,1.8,1.5,-2.5,1.5,2.3Projection of the chaotic attractor is
attractor from the uncoupled Lorenz system only when theractically an excited Lorenz attractor.
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0.8

S — T . though coupling coefficients satisfy the conservation condi-
tion (i.e., the total energy of the coupled systems keeps in-
varian). Therefore such a synchronization due to excitation
effects of coupling may be considered a self-organization
process. However, it is different from stochastic resonance or
02k | coherence resonance in Ref§-7], where the cooperative
behavior is chiefly due to effects of noise, and also different
from the classical synchronization where coupling mainly
synchronizes the original dynamics of the uncoupled system.

0.6

04f

Lyapunov Exponent
o

-o2 1 These interesting excitation functions of coupling are of
significance not only in theory on dynamics of nonlinear
-o4r 1 dynamical systems but also in biological applications. In par-
_ ticular, such excitation functions of coupling might make liv-
T ] ing organisms harmoniously organize their various appara-
i ) ) ) ) ) ) ) ) ) tuses and actively accomplish mutual communications
0 50 100 150 200 T?;:?e 300 350 400 450 500 among CE”S

Finally, we point out that although coupling has excitation
FIG. 8. Time evolution of the largest Lyapunov exponents cor-functions in the case of chaotic attractors, we have not given

responding to Figs. 5 and 7, where parametersaar®0.0,b=3,  any rigorous theoretical result, and more study is required.
¢c=23.63, and the coupling coefficient id=10.0. The largest
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Promotion of Science. This paper was partly supported by
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. . . APPENDIX A: SIMILAR MATRIX
Both theoretical analysis and numerical examples have
indicated that coupling indeed has a certain excitation ability Equation(2) may be rewritten as
to excite or recover some dynamics of the uncoupled system.

N
We have shown by examples that there is a threshold of dX 1
. . — = +
coupling strength: when the coupling strength goes beyond dt FX) glpkjk X, (AD)
this threshold, a limit cycle or chaotic attractor of the un-
coupled system will be excited or recovered in the abovewhere
mentioned sense. Moreover, phase synchronization can oc- 01 0 - 0
cur.
Similar to the effect of noise, coupling acts as a compen- 7= oot -0
sating energy to “lift” dynamics of the uncoupled system and Lo :
to push the coupled systems to reach synchronization even 1 00 - 0
2265 = 2275 with | being a unit matrix of ordem.
27 ¥ Denote by.A andB the Jacobian matrices of Eq4) and
22.64 . .
2265 (2) evaluated at their steady states, respectively. dpt
22,63 o =e?m(-UN (where I<j<N andi=y-1) be N unit roots of
nd 226 the algebraic equation™-1=0which is practically the char-
' == acteristic polynomial of the matrid, and denote byP the
26) > . =0 2 o = Vandermonde matrix
T T
FIG. 9. An example showing that coupling cannot excite the wql wol oyl

original potential Lorenz attractor in the uncoupled Lorenz system

when the uncoupled Lorenz system is not in the marginal state to Ne1 N’_l N‘_l
the chaotic attractor, where parametersard 0.0,b=3, c=23.63, w; 1wy T oy
and coupling coefficients ard=10.0. (a) Time evolution of the
third componenk; of the uncoupled Lorenz system with the initial
condition(~1.5, 1.8, 1.5 (b) time evolution of the third component PIBP=diagd(wy]),d(w,l), ... dlwyl)), (A2)

y; of the coupled Lorenz systems with the initial conditierl.5, _

1.8, 1.5, -2.5, 1.5, 2)31In either case, the amplitude of the third Where d(x):A+EJ!\‘:1DJ-xJ‘1. In addition, sinced(w;)=d(1)
component gradually decreases with time. =A from the conservation condition of coupling, the matrix

Then, it is easy to verify

066211-7



ZHOU, CHEN, AND WANG PHYSICAL REVIEW E71, 066211(2009

BB can be similar to a real block matrix, that is, there exists a Pr(®) =(1,1 cosd,l cos 29, ... | codN- 1)),
reversible real matrix@ such that
A O Pi(9) = (0,1 sind,1 sin 29, ... | sinf(N-1)9)!, (A5)
Q‘lBQ=< ) (A3) . . .
O R wheret means transpose. Now, it is easy to give expressions

. ) _ ) ~of QandR as follows:
whereR is a certain real matrix. For clarity, we distinguish

two cases. . Dr(¥y) —Di(9y) Dr(th) = Di(9)
Case N-2K+1. Define twomX m matrix functions: R = dia D(d) Dr(d) ) \D(B) Dr(P)

Dr(®) =Dy + A+D,cos9+D;c08 29+ -+ (AB)
+DycogN-1)9, and
Q= (Pr(0); Pr(191),P1(01); ... ;Pr(Vk), Pi(9k)),

Di(9) =D,sind+D3sin29+ -+ +Dysin(N-1)9 (A4) ) )
I ? : N where9;=2mj/(2K+1) for 1< j<K.

and twoNmXx m matrix functions: Case N=2K. Similarly,
|
. Dr(91) —Dy(th) ) (DR(ﬁK—l) = Dy(9-1) ))
R=d D ; Pl A7
'ag( /) (D.(ﬂl) De(9,) DOy DD A7)

and N _ N .
n=a+a?2 (- DY+ (1- w2 (- d?
j=1 j=1

Q = (Pr(0), Pr(m); Pr(D1),Pi(D); ... Pr(), Pi(9)),

N N
+ (E (- 1)J'd}2>) (E (- 1)J'd}2>).
where 9,=2mj/(2K) for 1=j<K-1, Dg(m=A = =

+20, (=)D, PrO)=(,1,...,),, and Pg(m=(I, Wheny<O0, Eq.(B1) has one positive root. Also, note that
=1,1,...1,-Dt N N
2 id =3 [1+-1]d">01=1.2.
j=1 j=2
APPENDIX B: CONDITIONS FOR LIMIT CYCLE OF

COUPLED BRUSSELATORS Thus <0 implies

N
Consider coupledN identical Brusselators with the form a2 [1+ (- 1)']dY
(2). We show that the coupled Brusselator_s ha_ve_ a limit cycle w1+ ’i'l=2 N 2 [1+(- 1)j]d(l).
even though the uncoupled Brusselator is still in the stable ) = )
state but not far away from a limit cycle. 2 [1+(-17d?
For simplicity, consider the case df=2K, whereK is a 1=2
positive integer. We then ha\@R(w):A+E}\‘:1(—1)i‘1Dj. (B2)

AssumeDj:diaQ(dfl),dEZ)) with d}l)>0 andd? >0 (1<|

- il : However,u<a?+1. Therefore
<N). Note that the characteristic polynomial Bk(7) is

N
a2 [1+(- D)I)(d? - dfY)
AN+ EN+7=0, (B1) 1=2
N N
> {2 [1+(- 1>i]d}1)} : {E [1+(- 1>J]d§2>}. (B3)
where i=2 =

Finally, when Eq(B2) together withu<a?+1 and Eq.(B3)
N are satisfied, the coupled Brusselators have a stable limit
E=al-1+uy, (- 1)i(d}2) + djfz)), cycle even though the uncoupled Brusselator is currently in
j=1 the stable steady state.
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